

# CERES Angular Distribution Model Working Group Report



Wenying Su Wenying.Su-1@nasa.gov NASA LaRC, Hampton VA

Lusheng Liang Zachary Eitzen Sergio Sejas SSAI, Hampton VA







# From radiance to flux: angular distribution models

- Sort observed radiances into angular bins over different <u>scene types</u>;
- Integrate radiance over all  $\theta$  and  $\varphi$  to estimate the anisotropic factor for each scene type:

$$R(\theta_0, \theta, \phi) = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\int_0^{2\pi} \int_0^{\frac{\pi}{2}} \hat{I}(\theta_0, \theta, \phi) cos\theta sin\theta d\theta d\phi} = \frac{\pi \hat{I}(\theta_0, \theta, \phi)}{\hat{F}(\theta_0)}$$

 For each radiance measurement, first determine the <u>scene type</u>, then apply scene type dependent anisotropic factor to observed radiance to derive TOA flux:

$$F(\theta_0) = \frac{\pi I_o(\theta_0, \theta, \phi)}{R(\theta_0, \theta, \phi)}$$





10/12/21

**CERES STM** 

#### Snow and ice fraction used for scene identification

- Microwave-based snow/ice fraction from NSIDC/NESDIS
  - The NSIDC (National Snow and Ice Data Center) snow/ice map is from the Near-Real-Time SSM/I-SSMIS EASE-Grid Daily Global Ice Concentration and Snow Extent product (Near-real-time Ice and Snow Extent, NISE).
  - NESDIS snow/ice map is also produced using microwave data. It is only used when NSIDC data is not available.
- Imager-based snow/ice fraction from cloud mask algorithm
  - Snow/ice tests only apply to clear MODIS pixels
  - Snow/ice detection algorithms were developed separately for polar and non-polar regions using combinations of reflectance at 0.6  $\mu$ m, 1.38  $\mu$ m, 2.1  $\mu$ m, and temperatures at 3.7  $\mu$ m, 11  $\mu$ m, 12  $\mu$ m.

#### NSIDC and imager-based snow ice fraction differ



NSIDC mean=67.3% Imager mean =84.5% RMSE=30.6%



NSIDC mean=73.2% Imager mean =87.3% RMSE=25.4%

10/12/21

**CERES STM** 

4

#### Sea ice fraction and CERES SW reflectance under clear-sky conditions

- Microwave product underestimates sea ice concentration
- Imager-based sea ice fraction overestimates sea ice concentration



#### Validating sea ice concentration: Kern et al. (2019)

- Separate the 10 sea-ice concentration products into 4 groups based on retrieval concept.
- Used ship-based visual observations (7000 over Antarctic, and 8000 over Arctic) to validate each product.



Figure 5. Spatio-temporal distribution of the ship tracks for (a, b) the Arctic and (c, d) the Antarctic from which ship-based visual observations of the sea-ice cover were used. Panels (a, c) illustrate the years, and panels (b, d) distinguish between winter (red) and summer (cyan) months.

## Comparison between daily mean ship-based and satellite SIC for Arctic

**Table 5.** Summary of the statistics of the comparison between daily mean ship-based and satellite SIC data (see Fig. 15, black symbols) for - from top to bottom - the entire year, only winter and only summer. DIFF is the mean difference satellite minus ship-based SIC, and SD is the respective standard deviation;  $R^2$  is the squared linear correlation coefficient. All concentration values are given in percent.

| Group    |            | I          |            |         |          | II       |            | 1        | П        | IV         |
|----------|------------|------------|------------|---------|----------|----------|------------|----------|----------|------------|
| All year | SICCI-12km | SICCI-25km | SICCI-50km | OSI-450 | CBT-SSMI | NOAA CDR | CBT-AMSR-E | ASI–SSMI | NT1-SSMI | NT2-AMSR-E |
| DIFF     | -6.9       | -7.8       | -7.3       | -7.3    | +0.4     | +0.6     | -0.7       | -5.4     | -13.8    | -0.7       |
| SD       | 12.0       | 12.1       | 12.4       | 12.9    | 13.4     | 13.3     | 12.9       | 16.1     | 14.5     | 13.3       |
| $R^2$    | 0.784      | 0.781      | 0.775      | 0.734   | 0.737    | 0.745    | 0.778      | 0.647    | 0.693    | 0.767      |
| Winter   |            |            |            |         |          |          |            |          |          |            |
| DIFF     | -7.4       | -7.4       | -6.2       | -7.4    | <  0.1   | -0.2     | -1.5       | -8.6     | -14.2    | -0.3       |
| SD       | 12.6       | 11.8       | 11.8       | 12.8    | 10.9     | 11.6     | 12.6       | 17.4     | 13.8     | 11.5       |
| $R^2$    | 0.558      | 0.594      | 0.606      | 0.591   | 0.595    | 0.587    | 0.551      | 0.429    | 0.507    | 0.595      |
| Summer   |            |            |            |         |          |          | 3          |          |          |            |
| DIFF     | -6.7       | -8.0       | -7.9       | -7.3    | +0.7     | +0.9     | -0.3       | -3.7     | -13.6    | -0.9       |
| SD       | 11.7       | 12.3       | 12.7       | 12.9    | 14.5     | 14.0     | 13.1       | 15.1     | 14.9     | 14.1       |
| $R^2$    | 0.814      | 0.793      | 0.780      | 0.754   | 0.734    | 0.750    | 0.806      | 0.722    | 0.702    | 0.771      |

# Comparison between daily mean ship-based and satellite SIC for Antarctic

**Table 6.** As Table 5 but for the Antarctic (see Fig. 16, black symbols).

| Group    |            | I          |            |         |          | П        |            | I        | П        | IV         |
|----------|------------|------------|------------|---------|----------|----------|------------|----------|----------|------------|
| All year | SICCI-12km | SICCI-25km | SICCI-50km | OSI-450 | CBT-SSMI | NOAA CDR | CBT-AMSR-E | ASI–SSMI | NT1-SSMI | NT2-AMSR-E |
| DIFF     | -3.0       | -4.4       | -3.1       | -3.8    | -1.8     | -2.3     | -1.4       | -3.3     | -11.0    | +4.5       |
| SD       | 13.4       | 13.8       | 14.0       | 13.7    | 15.2     | 15.5     | 14.8       | 15.7     | 14.8     | 16.9       |
| $R^2$    | 0.763      | 0.745      | 0.737      | 0.733   | 0.711    | 0.716    | 0.755      | 0.671    | 0.698    | 0.679      |
| Winter   |            |            |            |         |          |          |            |          |          |            |
| DIFF     | -1.6       | -2.7       | -2.6       | -3.2    | -1.6     | -2.0     | +0.2       | -3.6     | -11.6    | +3.8       |
| SD       | 9.8        | 9.6        | 10.5       | 10.5    | 10.7     | 11.0     | 9.5        | 10.6     | 11.7     | 10.7       |
| $R^2$    | 0.771      | 0.771      | 0.741      | 0.731   | 0.748    | 0.751    | 0.753      | 0.659    | 0.700    | 0.732      |
| Summer   |            |            |            |         |          |          |            |          |          |            |
| DIFF     | -3.9       | -5.6       | -3.4       | -4.2    | -2.0     | -2.5     | -2.5       | -3.1     | -10.6    | +5.0       |
| SD       | 15.3       | 16.1       | 16.0       | 15.6    | 17.7     | 17.9     | 17.4       | 18.4     | 16.6     | 20.0       |
| $R^2$    | 0.698      | 0.666      | 0.675      | 0.667   | 0.643    | 0.651    | 0.693      | 0.614    | 0.640    | 0.621      |
|          |            |            |            |         |          |          |            |          |          |            |

Currently in SSF

### Use sea ice brightness index to classify clear-sky ADMs







Using SIBI to classify the clear-sky sea ice ADMs increases flux consistency for clear sea ice scenes.

#### CERES unfiltering algorithm

- Filters are placed in front of the radiometers to measure the energies from the SW, WN/LW, and total
  portions of the spectrum. These filtered radiances are dependent upon how the radiation is filtered
  through the instrument optics.
- A procedure is applied that corrects for the spectral response of the instrument to produce "unfiltered" radiances that represent the radiation received by the instrument prior to entering the optics.
- Developed a more comprehensive database of spectral radiances to describe the relationship between filtered and unfiltered radiances.
- Includes more solar and viewing zenith angles.
- Seasonal simulations for different surface types (forest, savanna, grassland/crops, dark desert, and bright desert) using land surface BRDF from MODIS.
- Snow models are from Warren & Wiscombe, and MODIS Arctic and Antarctic BRDF model.
- Using median and percentile to specify AODs and surface temperatures when appropriate.

# Impact of new unfiltering algorithm on instantaneous SW flux Aqua

Terra



10/12/21 CERES STM 1:

# Impact of new unfiltering algorithm on daytime LW flux (TOT-SW)

Terra Aqua



# Impact of new unfiltering algorithm on nighttime LW flux (TOT)

Terra Agua



#### Error analysis database

- Extreme cases for ocean and land
  - Large aerosol loading (99<sup>th</sup> percentile)
  - Minimum/maximum surface temperatures
  - Wind speeds of 2 m/s and 12 m/s over ocean
  - Unfiltering clear-sky radiances assuming cloudy, and unfiltering cloudy scene assuming clear-sky
- Different aerosol types
- · Different cloud types and optical depths for cloudy ocean and land
- Spectrally integrated unfiltered radiances are then compared with the "unfiltered" radiance derived from filtered radiances by using the regressions

#### SW radiance unfiltering uncertainty at different solar zenith angles



#### SW radiance unfiltering uncertainty to wind speed and aerosol type over clear ocean





10/12/21 CERES STM 1

# SW radiance unfiltering uncertainty to surface type and aerosol optical depth over clear land



Applying unfiltering coefficients derived over forest to bright desert increases the uncertainty by a factor of 5



Unfiltering uncertainty distribution using median AOD and 99 percentile AOD

- Median AODs range from 0.05 to 0.83
- 99<sup>th</sup> percentile AODs range from 0.5 to 1.3

10/12/21 CERES STM

## SW radiance unfiltering uncertainty to cloud optical depth





10/12/21 CERES STM 1

#### Daytime LW radiance unfiltering uncertainty to surface temperature



#### NPP ADMs: LW Clear-sky

- CERES on NPP has been collecting full RAP data since March 2020.
- CERES clear-sky LW ADMs are constructed separately over ocean, desert and non-desert land for discrete intervals of precipitable water, lapse rate, and surface skin temperature.

**Table 3.** Precipitable water (w), lapse rate  $(\Delta T)$ , and surface skin temperature  $(T_s)$  intervals used to determine LW and WN ADMs under clear-sky conditions over the ocean, land, and desert. There are 4 w bins, 4  $\Delta T$  bins, and 10  $T_s$  bins.

| w (cm) | $\Delta T$ (K) | <i>T</i> <sub>S</sub> (K) |
|--------|----------------|---------------------------|
| 0-1    | < 15           | < 260                     |
| 1-3    | 15-30          | 260-340 every 10 K        |
| 3-5    | 30-45          | > 340                     |
| > 5    | > 45           |                           |

Su et al. (2015)

## Anisotropic factor comparisons between NPP and Aqua over clean scenes



#### Cloudy-sky LW ADMs

 LW ADMs over cloudy-sky are constructed as a function of 'pseudoradiance' (Ψ) over discrete intervals of surface temperature, cloud fraction, precipitable water, etc.:

$$\Psi(w, T_s, T_c, f, \epsilon_s, \epsilon_c) = (1 - f)\epsilon_s B(T_s) + \sum_{j=1}^{2} \left[ \epsilon_s B(T_s)(1 - \epsilon_{c_j}) + \epsilon_{c_j} B(T_{c_j}) \right] f_j$$

• For each given case, mean radiance for each 1 Wm $^{-2}$ sr $^{-1}$   $\Psi$  bin is calculated and a third-order polynomial fit is used as a backup.



Table 5. Surface type, precipitable water (w), cloud fraction (f), surface-cloud temperature difference  $(\Delta T_{sc})$ , and surface skin temperature  $(T_s)$  intervals used to determine LW and WN ADMs under cloudy conditions over the ocean, land, and desert surface. There are 4 w bins, 5 f bins,  $22 \Delta T_{sc}$  bins, and  $11 T_s$  bins.

| Surface type | w (cm) | f (%)    | $\Delta T_{\rm sc}$ (K) | $T_{s}$ (K)          |
|--------------|--------|----------|-------------------------|----------------------|
| Ocean        | 0-1    | 0.1-25   | <-15                    | < 275                |
| Land         | 1-3    | 25-50    | -15 to 85 every 5 K     | 275 to 320 every 5 K |
| Desert       | 3-5    | 50-75    | > 85                    | > 320                |
|              | > 5    | 75-99.9  |                         |                      |
|              |        | 99.9-100 |                         |                      |

Su et al. (2015)

### Increasing pseudoradiance bin from 1 to 2 Wm<sup>-2</sup>sr<sup>-1</sup> has minimum impact on monthly mean flux

- Construct LW ADMs using pseudoradiance bin of 2 W m<sup>-2</sup> sr<sup>-1</sup>
- Fluxes inverted with this sets of ADMs are virtually the same as Ed4 ADMs



|          | Avg flux diff            | RMS flux diff          |
|----------|--------------------------|------------------------|
| Jan 2018 | -0.002 W m <sup>-2</sup> | 0.11 W m <sup>-2</sup> |
| Apr 2018 | -0.002 W m <sup>-2</sup> | 0.10 W m <sup>-2</sup> |
| Jul 2018 | ~0.000 W m <sup>-2</sup> | 0.09 W m <sup>-2</sup> |
| Oct 2018 | ~0.000 W m <sup>-2</sup> | 0.08 W m <sup>-2</sup> |

July 2018 flux differences

#### Summary

- The current NSIDC sea ice concentration used in CERES data processing underestimates sea ice concentration by about 10%.
- Sea ice brightness index is used to mitigate this issue. NOAA sea ice concentration CDR is considered for Ed5.
- The updated unfiltering algorithm will be used for CERES Ed5. Error analysis indicates that
  the unfiltering uncertainty is less than 0.3% for SW and less than 0.1% for LW.
- The undated unfiltering algorithm has negligible impact on global mean fluxes, but regional instantaneous monthly mean SW and daytime LW flux can change by up to 2 Wm-2.
- Initial NPP clear-sky LW ADMs are more isotropic than Aqua ADMs.